27 research outputs found

    Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone

    No full text
    The mechanical properties of bone depend largely on its degree and distribution of mineralization. The present study analyzes the effect of an inhomogeneous distribution of mineralization on the stress and strain distributions in the human mandibular condyle during static clenching. A condyle was scanned with a micro-CT scanner to create a finite element model. For every voxel the degree of mineralization (DMB) was determined from the micro-CT scan. The Young's moduli of the elements were calculated from the DMB using constant, linear, and cubic relations, respectively. Stresses, strains, and displacements in cortical and trabecular bone, as well as the condylar deformation (extension along the antero-posterion axis) and compliance were compared. Over 90% of the bone mineral was located in the cortical bone. The DMB showed large variations in both cortical bone (mean: 884, SD: 111 mg/cm(3)) and trabecular bone (mean: 738, SD: 101 mg/cm(3)). Variations of the stresses and the strains were small in cortical bone, but large in trabecular bone. In the cortical bone an inhomogeneous mineral distribution increased the stresses and the strains. In the trabecular bone, however, it decreased the stresses and increased the strains. Furthermore, the condylar compliance remained relatively constant, but the condylar deformation doubled. It was concluded that neglect of the inhomogeneity of the mineral distribution results in a large underestimation of the stresses and strains of possibly more than 50%. The stiffness of trabecular bone strongly influences the condylar deformation. Vice versa, the condylar deformation largely determines the magnitude of the strains in the trabecular bone

    Degree and distribution of mineralization in the human mandibular condyle

    No full text
    The degree of mineralization of bone (DMB) in the mandibular condyle reflects the age and remodeling rate of the bone tissue. Quantification of DMB facilitates a better understanding of possible effects of adaptive remodeling on mineralization of the condyle and its possible consequences for its mechanical quality. We hypothesized differences in the degree and distribution of mineralization between trabecular and cortical bone and between various cortical regions. Microcomputed tomography was used to measure mineralization in 10 human mandibular condyles. Mean DMB was higher in cortical (1,045 mg hydroxyapatite/cm(3)) than in trabecular bone (857 mg/cm(3)) and differed significantly between cortical regions (anterior 987 mg/cm(3), posterior 1,028 mg/cm(3), subchondral 1,120 mg/cm(3)). The variation of DMB distribution was significantly larger in the anterior cortex than in the posterior and subchondral cortex, indicating a larger amount of heterogeneity of mineralization anteriorly. Within the cortical bone, DMB increased with the distance from the cortical canals to the periphery. Similarly, the DMB of trabecular bone increased with the distance from the surface of the trabeculae to their cores. It was concluded that the rate of remodeling differs between condylar trabecular and cortical bone and between cortical regions and that DMB is not randomly distributed across the bone. The difference in DMB between condylar cortical and trabecular bone suggests a large difference in Young's modulus

    Mathematical model of the human jaw system simulating static biting and movements after unloading

    No full text
    When the resistance to a forceful isometric bite is suddenly removed in unloading experiments, the bite force drops to zero and the mandible reaches a constant velocity. This occurs at an initial bite force of 100 N after similar to 12 ms when the incisors have moved 4.5 mm. Reflex activity is far too slow to limit the velocity at impact. To explore the influence of other factors (cocontraction, force-length properties, and force-velocity properties of the muscles) on the velocity at impact, a numerical forward dynamic model of the jaw system is formulated. Unloading experiments in different experimental conditions were simulated with the model. Most parameter values of the model are based on physiological data, both from literature and a data basis from a human cadaver study. Other parameter values were found by optimally fitting the model results to data from the unloading experiments. The model analysis shows that the limitation of the jaw velocity mainly may be due to the force-velocity properties of the jaw-closing muscles. Force-length properties of the jaw muscles hardly contribute to the impact velocity. The compliance of tendinous sheets in the jaw muscles is unfavorable for the reduction in impact velocity, whereas cocontraction of jaw-opening and -closing muscles helps to limit impact velocity. The force-velocity properties of the muscles provide a quick mechanism for dealing with unexpected closing movements and so avoid damage to the dental elements

    Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone

    No full text
    The purpose of this study was to investigate the relation between bone tissue stiffness and degree of mineralization distribution and to examine possible changes during prenatal development. Understanding this may provide insight into adaptation processes and into deformation mechanisms of the bone microstructure. Mandibular condyles from four fetal and newborn pigs were used. Tissue stiffness was measured using nanoindentation, the degree of mineralization with microCT. Eight indents were made over the trabecular width of 15 trabeculae in each specimen, leading to a total of 960 indents. Subsequently, the degree of mineralization of these locations was determined. Intratrabecular variations in bone tissue stiffness and degree of mineralization showed a similar pattern; low at trabecular surfaces and higher in the cores. A strong correlation was found between the two variables, which remained unchanged during development. It was concluded that bone tissue in fetal and newborn trabecular cores resembles adult trabecular bone tissue properties and is distributed in a regular radial pattern in trabeculae. For the first time, it was shown that the intratrabecular tissue stiffness develops along the same path as the degree of mineralization. Knowledge regarding intratrabecular tissue stiffness and mineralization results in a better understanding of trabecular bone mechanical behavior on a structural and tissue level

    Relationship between tissue stiffness and degree of mineralization of developing trabecular bone

    No full text
    It is unknown how the degree of mineralization of bone in individual trabecular elements is related to the corresponding mechanical properties at the bone tissue level. Understanding this relationship is important for the comprehension of the mechanical behavior of bone at both the apparent and tissue level. The purpose of the present study was, therefore, to determine the tissue stiffness and degree of mineralization of the trabecular bone tissue and to establish a relationship between these two variables. A second goal was to assess the change in this relation during development. Mandibular condylar specimens of four fetal and four newborn pigs were used. The tissue stiffness was measured using nanoindentation. A pair of indents was made in the cores of 15 trabecular elements per specimen. Subsequently, the degree of mineralization of these locations was determined from microcomputed tomography. The mean tissue stiffness was 11.2 GPa (±0.5 GPa) in the fetal group and 12.0 GPa (±0.8 GPa) in the newborn group, which was not significantly different. The degree of mineralization of the fetal trabecular cores was 744 mg/cm3 (±28 mg/cm3). The one in the newborn bone measured 719 mg/cm3 (±34 mg/cm3). Again, the difference was statistically insignificant. A significant relationship between tissue stiffness and degree of mineralization was obtained for fetal (R = 0.42, p <0.001) and newborn (R = 0.72, p <0.001) groups. It was concluded that woven bone tissue in fetal and newborn trabecular cores resembles adult trabecular bone in terms of tissue properties and is strongly correlated with degree of mineralization. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 200

    Biomechanical effect of mineral heterogeneity in trabecular bone

    No full text
    Due to daily loading, trabecular bone is subjected to deformations (i.e., strain), which lead to stress in the bone tissue. When stress and/or strain deviate from the normal range, the remodeling process leads to adaptation of the bone architecture and its degree of mineralization to effectively withstand the sustained altered loading. As the apparent mechanical properties of bone are assumed to depend on the degree and distribution of mineralization, the goal of the present study was examine the influences of mineral heterogeneity on the biomechanical properties of trabecular bone in the human mandibular condyle. For this purpose nine right condyles from human dentate mandibles were scanned and evaluated with a microCT system. Cubic regional volumes of interest were defined, and each was transformed into two different types of finite element (FE) models, one homogeneous and one heterogeneous. In the heterogeneous models the element tissue moduli were scaled to the local degree of mineralization, which was determined using microCT. Compression and shear tests were simulated to determine the apparent elastic moduli in both model types. The incorporation of mineralization variation decreased the apparent Young's and shear moduli by maximally 21% in comparison to the homogeneous models. The heterogeneous model apparent moduli correlated significantly with bone volume fraction and degree of mineralization. It was concluded that disregarding mineral heterogeneity may lead to considerable overestimation of apparent elastic moduli in FE models
    corecore